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In paper I of this series it was shown how to take transient nucleation into account in the spontaneous freezing
of large clusters when deriving nucleation rates and time lags from sets of nucleation times. This required an
estimate of the “reduced moment” characterizing the period of transient nucleation. Also, a procedure was
sketched for constructing sets of stochastic times simulating nucleation times, for purposes of determining
statistical uncertainties in the derived kinetic parameters of nucleation rates. In the present paper, a considerably
more precise method for generating stochastic nucleation times is presented and an optimum weighting scheme
for least squares analyses of nucleation rates and time lags is formulated. In the prior literature no suitable
means had been established for estimating the reduced moment. Alternative ways to estimate this moment
from nucleation data are discussed. It is found that the true expectation values of uncertainties,σε, in rates
and time lags are significantly larger than the uncertainties,σls, derived from residuals in least squares analyses
of individual sets of nucleation times. Although the elements of the least squares error matrix are lower for
the optimum weight function than for the unit weights and arctangent weights used in prior analyses, the
actual uncertainties do not depend strongly upon which weighting scheme is employed. The derived kinetic
parameters do, however, depend appreciably upon the weighting, and results of the optimum weighting are
preferred. A virtue of the analysis of simulated stochastic nucleation times is that it provides a valid measure
of theactualuncertainties in derived nucleation parameters as well as the smaller, and therefore misleading,
uncertainties inferred from a conventional error matrix. The analysis presented leads to guidelines conveying
how large a set of nucleation times must be in order to provide meaningful determinations of nucleation rates
and time lags. The new procedure also provides the first estimates of the uncertainty in reduced moments
derived from sets of nucleation times, including their dependence on sample size.

Introduction

Molecular dynamics (MD) simulations with realistic potential
functions are providing a fruitful new way to study the
phenomenon of homogeneous nucleation in the freezing of
liquids in the realm of very deep supercooling. Nevertheless, a
completely satisfactory procedure to analyze such MD simula-
tions has not yet appeared. The aim of the present paper is to
outline an approach for such an analysis. In a previous paper1

(paper I) a procedure was developed for deriving nucleation
rates and nucleation time lags from simulations of freezing in
sets of large supercooled clusters, provided the transient
nucleation regime had already been characterized. How to deal
with the parameter characterizing this regime was not addressed
satisfactorily, however. To date, to our knowledge, no reliable
information establishing this parameter exists. Paper I also
analyzed the statistical errors to be expected, although the errors
were somewhat distorted because they were not based upon the
optimum weighting of data.

In the following we sketch aspects that still need to be
considered in the analysis of kinetic data from MD simulations.
Three parameters are involved: the rate, Js, the time lag, to,
indicating the duration of the transient regime, and what we
have chosen to call the “reduced moment,”MR, to characterize
nucleation kinetics in the transient regime.

As before, we adapt Wu’s method of moments2 for bulk
systems to systems of clusters and characterize the transient

kinetic regime in terms of the reduced moment,MR, related to
Wu’s momentM as outlined below. Because MD sample sizes
for clusters tend to be comparatively small from a statistical
perspective, a scheme was developed in paper I for constructing
realistic data sets to model stochastic nucleation times (SNTs).
Statistics gathered forJs andto values derived from least squares
analyses of such sets of SNTs were used to assess the relative
merits of two basic approaches to MD data analysis. The first
(option 1 in paper I) was based on expressions, summarized
below, which explicitly include the effects of transient nucle-
ation. The other (option 2 in paper I) was the conventional model
of sudden onset of nucleation that ignores the gradual build up
of pre-critical embryos. It was found that the sudden onset model
produced smaller apparent statistical errors, and that corrections
could be made for the associated systematic errors. Recent
advances in computer technology have greatly increased the
practical limit of MD sample sizes for molecular systems as
complex as 700-molecule clusters of MF6 from about 20 to
many hundreds of nucleation events. Uncertainties correspond-
ing to these larger sample sizes are sufficiently reduced that
the explicit treatment of transient nucleation (option 1) is now
preferred.

The motivation for writing a sequel to paper I was 3-fold.
First was the recognition that neither choice of weights suggested
in prior work3 and used in paper I, namelywj ) 1 or wj )
arctan(1/JsVctj), with Vc the cluster volume, was the optimum
choice for treating transient nucleation. In the present paper an* Corresponding author. E-mail: lbart@umich.edu.
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improved weighting function is presented that is computationally
simple and appropriate for the sets of stochastic nucleation times
associated with transitions in clusters. A second motivation was
the development of a greatly improved method for constructing
model sets of SNTs for least squares analyses. Third, a method
was developed to treat the extraction of information about the
reduced moment. Paper I had dealt only briefly with this
problem. A more detailed examination of ways to determine
MR is outlined in the following, including examples from
molecular dynamics data sets. Moreover, the first analysis to
date is presented for determining the uncertainty inMR.

The virtue of realistic constructions of sets of nucleation times
is that the rates and time lags fed into the constructions are
known exactly so that actual errors in rates and time lags derived
by least squares analyses of sets of nucleation times can be
recognized. Therefore, realistic expectation values of standard
deviations in derived parameters can be determined. Such
measures of error should also apply to analyses of data from
MD simulations where actual errors are unknown.

The described treatment of model data makes it possible to
find how parameter uncertainties depend on the number of
nucleation events per data set, both for standard deviations
derived from least squares residuals,σls, and for expectation
values,σε, of standard deviations derived from analyses of large
ensembles of sets of SNTs. Guidelines are obtained for
estimating realistic uncertainties applicable to single MD data
sets where the error matrix alone is shown to be entirely
insufficient. Illustrative results of this approach that treat
preliminary MD data4,5 for (RbCl)108 and (SeF6)550 clusters are
presented.

Summary of Method of Moments for Clusters. Prior to
the treatment in ref 1, the decay of a population ofNo unfrozen
clusters due to nucleation had been considered to follow the
first-order law3

for the sudden onset of nucleation at timeto, the so-called time
lag. Heret g to is the time of thelth nucleation event,Nl(t) is
the number of clusters not yet having experienced formation of
a critical nucleus before thelth nucleation, andK represents
the productJsVc of the steady-state nucleation rate,Js, and the
cluster volume,Vc. Paper I adapted Wu’s method of moments,
with its explicit treatment of transient nucleation in a large bulk
volume to one suitable for use with finite sets of clusters,
resulting in an expression of the form

The derivation and meaning ofS(t) are given below in eqs 3,4.
S(t) differs from (t - to) in the region of transient nucleation,
but approaches that expression in the limit of larget.

For convenience in later equations, we adopt the notation

Wu’s method of moments2 yields an explicit expression for
the ratioR(t) in the development of nucleation rateJ(t), where

with the ratio expressed in Wu’s notation as

This ratio differs from unity during the time it takes for the
buildup of precursors that ultimately leads to a steady-state rate
Js of production of critical nuclei. Integration of eq 3b yields a
relation for the accumulated number of critical nuclei,N(t), in
the freezing of a fixed volume,Vl, of a supercooled liquid.
Assuming that the nuclei formed do not significantly deplete
the volumeVl accessible for further nucleation,

Integration ofR(t) yields

Wu’s parametersa andb are defined in terms of a quantity we
choose to call the “reduced moment”MR, such that

and

Here MR ) 2M/to2, where the momentM is a quantity Wu
regarded as a free parameter to be derived in the analysis of
experimental data. It is evident that the lowest value the reduced
moment can have is unity.

If, instead of a system consisting of Wu’s large fixed volume,
the system is a set ofNo supercooled clusters, each of whose
volumes isVc, then the nucleation expression must be modified.
When one cluster is removed from the set after a critical nucleus
has formed in it, the volume remaining in the set becomesNlVc,
where Nl is the number of liquid clusters left in the set.
Therefore, instead of eqs 3a and 3b, we have

By virtue of the definitionS(t) ≡ ∫o
t R(t′) dt′, rearrangement

and integration of eq 7 produces eq 2 above. Note that eq 2
reduces to eq 1 asMR approaches unity, or whent becomes
very large. Note also thatNl has been treated as a continuous
function of t, an approximation that becomes more accurate as
the number of clusters in a set becomes large. HowS(t), and
thereby- ln[Nl(t)/No], varies withMR for a givent is shown in
Figure 1.

In analyzing simulations for a set ofNo clusters, the sequence
of numbersNl is known exactly, whereas the stochastically
determined times are very much a matter of chance and can
vary widely from set to set. Therefore it is reasonable in least
squares analyses to consider the nucleation time as the uncertain
“y” variable and the quantitygl(t) of eq 2b to be the accurately
known “x” variable. To carry out least squares analyses, then,
it is necessary to invert eq 7 to the formt(gl). As shown in
paper I, an empirical expression for the reduced timet/to as a
function of gl, namely

ln[Nl(t)/No] ) -K(t - to) (1)

ln[Nl(t)/No] ) -KS(t) (2a)

gl(t) ≡ -ln[Nl(t)/No] (2b)

J(t)/Js ≡ R(t) (3a)

R(t) ) 1 - 1
2

erfc[ln(t/to) - a

x2b2 ] (3b)

S(t) ≡ N(t)/JsVl ) ∫o

t
R(t′)dt′ (4a)

S(t) ) t(1 - 1
2

erfc[ln(t/to) - a

x2b2 ]) -

to(1 - 1
2
erfc[ln(t/to) + a

x2b2 ]) (4b)

a ) - 1
2
ln(MR) (5)

b2 ) ln(MR) (6)

R(t) )
J(t)
Js

) 1
Js

dN/dt
NlVc

)
-(dNl/Nl)/dt

K
(7)

t/to ≈ 1 + gl/Kto - (1 - 0.5/MR
2.5) ×

exp[-1.82(gl/Kto)
1/2/(MR - 1)0.41] (8)
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is sufficiently accurate for use in least squares calculations over
the range ofMR expected to be physically significant.

Generation of Model Stochastic Times.A requisite for
testing the method of moments is a procedure for selecting large
numbers of sets of stochastic nucleation times (SNTs) of various
numbers,No, of independent clusters per set. This provides as
much “data” as desired, all of it based on known values for
rate, time lag, and reduced moment. To emphasize what was
mentioned above, fitting such data by least squares reveals the
actual errors in the derived parameter values in individual sets,
and provides the standard deviations,σls, derived from the
residuals encountered in individual data sets. More importantly,
from the actual errors in parameters, it yields the expectation
values of the standard deviationsσε derived from the variance
in the least squares parameters over an ensemble of sets.
Presumably this estimate of uncertainty can be applied to cluster
nucleation data from MD simulations, where “true” parameter
values are unknown. Initial results for SNT analyses presented
in paper I confirmed the utility of the approach. However, they
employed an inefficient and numerically problematic way to
create the sets of SNTs, and were based on weights that were
decidedly nonoptimum for the transient nucleation model. An
improved procedure for determining sets of SNTs is outlined
next.

The general scheme for generating suitable sets of stochastic
times is to apportion time, from 0 to∞, into an arbitrarily large
number,NB, of equally probable intervals or time bins. We have
usually takenNB to be 10 000. Here, probability refers to the
likelihood of a nucleation event occurring within the time
spanned by each bin. An event time,tk, lying somewhere within
bin k, is ascribed to each bin. Typically eachtk is positioned at
the same fraction,fB, of the bin’s span from the start of the bin.
Individual sets of stochastic times,No in number, are produced
as follows. FirstNo bin numbers,n, are chosen randomly from
the entire set ofNB bins. To mimic sizes of sets characteristic
of MD simulations, the number of time bins should greatly
exceedNo, although calculations to establish limiting values of
Kls and to

ls have been carried out for sets withNo as large as
20 000. TheNo stochastic nucleation times are simply the values

of the times,tn, associated with the chosen bins. Set selection
is repeated until a statistically meaningful ensemble of sets of
simulated nucleation times{tn} is formed. Each set is ordered
in time and analyzed in the same way as a set from an MD
simulation. As will be seen, the new method for determining
values of bin event times,tk, allows one either to determinet’s
for the entire set of bins or, if desired, just for individual
randomly selected bins.

In the earlier paper,1 time apportionment was based on
integration of the Wu probability distribution,P(t), suitably
modified for clusters. As derived in paper I,

The desiredtk values are the integration limits for which the
expressions

are satisfied.
Solving eq 10 for the integration limits,tk, by numerical

integration of P(t) suffers some practical deficiencies. The
method is prone to systematic, often cumulative, errors, includ-
ing round-off errors in accumulating the running total of the
integration limit. A method that avoids the troublesome numer-
ical integration process is as follows. It has proven to be orders
of magnitude more accurate, as well as simpler to apply.

Consider a term,hk, analogous togl in eq 2b,

in which k indexes the nucleation events, and the total number
of nucleation events is nowNB rather thanNo. In this expression
Nk(tk) represents, forNB evolving clusters, the average number
of unnucleated clusters remaining at some arbitrary fraction,
fB, of the way across bink, namely,

Taking fB ) 0 corresponds to locating thekth nucleation event
at the beginning of bink. For the particular case ofNB equally
probable nucleation events distributed uniformly over theNB

time bins eq 2, evaluated at these “average” event times,
becomes

Finding the desired time apportionment reduces to finding values
of tk that satisfy eq 12. BecauseS(t) is a smooth, monotonically
increasing function with a limiting expression

solutions of eq 12 are easily found. If eq 8 were exact, it would
be possible to use it for calculating the desiredtk values directly,
by substituting the expression forhk in place ofgl, but a more
precise evaluation of bin event times is desired.

Simple search techniques suffice for locating individualtk
values, whether for randomly selectedk’s or for the complete
set in succession. Once a pair oft’s is found such that their
correspondingS(t) values bracket the targethk value, the time
interval can be successively halved, each time choosing the half
whose correspondingS(t) values still bracket the targethk value.
In the absence of any prior knowledge of narrower limits for
tk, one can start with the full range, 0< tk < tNB or with tk-1 <
tk e tNB. For largeNB substituting the limiting expression for

Figure 1. Dependence of the decaying populationNl of liquid clusters
on the reduced moment,MR. In all curves,K is taken to be 1. The
dashed line in the main plot corresponds to the limiting moment, unity,
where the decay ofNl is exponential. The next two values of the moment
are in the range of those suggested in prior work, namely 1.2 and 1.4.
Intervals between successiveMR values in the remainder of the curves,
starting with 2.2, are all 0.8. In the insert are plotted the same curves
out to much larger values of the time. This is to show that the curves
ultimately do approach the limiting value, that forMR ) 1, here
represented by a heavy solid line.

P(t) ) KR(t) exp[-KS(t)] (9)

∫0

tk P(t′) dt′ ) (k - 1 + fB)/NB, k ) 1, ...,NB (10)

hk ≡ -ln[Nk(tk)/NB] (11a)

Nk(t) ) [NB - (k - 1 + fB)] (11b)

KS(tk) ) hk ) -ln([NB - (k - 1 + fB)]/NB) (12)

lim
tf∞

S(t) ) (t - to) (13)

Analyses of Nucleation Rates from MD Simulations J. Phys. Chem. A, Vol. 107, No. 11, 20031861



S(t) into eq 12 leads to a simple expression fortNB. When
calculating a full set oftk’s, a number of ways of estimating
the width of the next bin or locating the nexttk are available,
including application of eq 8 or eq 17 below. A faster, more
efficient search scheme than the indicated geometric progression
combines finding a partially reduced time span, then fitting
selected [t,S(t)] points by a low-order polynomial and interpolat-
ing to the finaltk value, or even iterating the polynomial plus
interpolation steps, with reduced time spans for each iteration.
As a practical matter, all of the numerical integrations of the
previous method (the “P-method”), and all of the calculations
of the present method (the “S-method”) were carried out in
reduced time, rate, and volume (i.e., assigning unity to the values
for to andK).

Error Matrix. The manner in which data are weighted and
standard deviations are calculated can have a significant effect
on derived parameters and their apparent uncertainties. All
calculations ofσls reported here were based on the “bona fide
error matrix” M x

W, for calculating parameter standard devia-
tions and correlation coefficients from residuals where, in the
case of the derivation of two parameters,

with B, A, W, andM f representing, respectively, the information
matrix, the design matrix, the weight matrix, and the matrix of
errors in observations.6 The matrix M x

W is valid even for
nonoptimum weights as opposed to the false, or “zero-order”
error matrixM x

o,

whereV represents the matrix of residuals, andn andm, the
number of observations and the number of derived parameters.
Equation 15 is widely used but valid only if the weights are
optimum,6 that is (in the case of uncorrelated errors in
observations), weights must be proportional to the inverse of
the variances in observations inMf. Nucleation times in separate
clusters of molecular dynamics simulations are uncorrelated,
assuming the starting configurations are prepared properly, so
that a diagonal weight matrix is appropriate. No uncertainty is
attached to the values forgl(t) ) -ln(Nl(t)/No), whereNo is the
number of clusters in the set, andNl the number of unnucleated
clusters just prior to thelth nucleation. However, the nucleation
times,tl, occurring purely by chance, are subject to substantial
uncertainties. An estimate of the variance in individual stochastic
nucleation times is presented next.

Weight Functions.A procedure to devise a weight function
taking the uncertainty in nucleation times into account is as
follows. The optimum weightwl is inversely proportional to
the variance expected for the time,tl. Variances in stochastic
times are related to the average intervals between such times.
This correspondence is suggested by the following argument.
In least squares analyses of sets ofNo events, the calculated
timestl to be compared with the observed times (in a molecular
dynamics run or in a model set of stochastic times), can be
envisaged as belonging to time bins in a bin array withNB being
just No. Since, on average, whether in MD or model runs, the
bins tend to be sampled evenly over the bin array, the typical
residual for timetl tends to have the magnitude of the breadth
of bin l. This breadth is the difference between timestl+1 and

tl, each time calculated from eq 8. Therefore, a plausible weight
for eventl would be proportional to the inverse square of this
interval, or

whereC is an arbitrary constant, and the times are those from
eq 8. Although these intervals depend on the quantities to be
derived, namely the nucleation rate and the time lag, as well as
the moment, it is simple to cycle to self-consistency during the
least squares routine. Inasmuch as the time width of each bin
for the stochastic generation of nucleation times is defined by
the integral

the time spread∆t over a bin is roughly proportional to the
inverse of the nucleation probability function,P(t), a function
given explicitly in eq 9. Therefore, the weights are small when
Ph is small, that is, when the nucleation time is either much
smaller than or very much larger than the nucleation time lag.

Determination of Reduced Moment.One possible method
is suggested by the fact that the reduced moment is related to
the number of events occurring before the time lagto is reached.
For example, ifMR were unity, there would be no such events
whatsoever. AsMR increases, so does the fraction,Fr, of
nucleation events occurring beforeto. Statistically, this fraction
is

This method would work very well if the time lag were known
independently of the least-squares analysis of the nucleation
data. Unfortunately, the time lag can be determined from MD
data only by fitting the observed set of nucleation times with
the representation of eq 8 or equivalent. It turns out that in such
fittings by least squares,K andto are highly correlated, with a
correlation coefficient of the order of 0.9 or higher. As the
parameterMR is increased in least squares analyses, the value
of to derived also increases as explained in paper I.1 Therefore,
the productKto increases even faster with the result that the
theoretical expression (eq 18) forFr closely parallels the
observed number of events occurring before the derived time
lag, almost irrespective of the value assumed forMR. This
remarkable parallel is illustrated in Table 1 for the case of 150
nucleation events in molten (RbCl)108 clusters.4 Such a parallel
was also seen in a series of runs on liquid (SeF6)550 clusters.
Therefore, this approach to determining the reduced moment is
ineffective.

Despite the above result, there nevertheless is information
aboutMR in the data. If the least squares analyses are carried
out for a series of values ofMR, one of the representations of
the data is better than the others. The region of transient
nucleation is more sensitive to the value ofMR than the region
at higher times. After determining the value ofto corresponding
to each assumed moment from the full set of data, it is
worthwhile to calculate the sums of squares of the residuals in
the region of transient nucleation. This procedure yields a more
definitive result than the first approach described above, as
suggested in Table 2 and shown more objectively in a
subsequent section. Still, the determination of reduced moment
is very noisy unlessNo is in the neighborhood of thousands of

wl ) C/(tl+1 - tl)
2 (16)

∫tl

tl+1P(t′) dt′ ) 1/NB

≈ Ph∆t (17)

Fr ) 1 - exp[- Ktoerf(xln(MR)/2

2 )] (18)

M x
W ≡ (σK

2 σKσto
FK,to

σKσto
FK,to σto

2 )
) B-1A′WM fWAB-1 (14)

M x
o ) B-1V′WV /(n - m) (15)
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independent events. If least squares analyses are carried outonly
for times in the transient region,to andK adjust themselves to
fit the data almost equally well for any plausible value of the
reduced moment. Least squares refinements including times
beyond the transient region are needed to place constraints on
t0 andK.

Results

Construction of Model Stochastic Times.Bin times cal-
culated via the S-method exhibit a noise level consistent with
the degree of precision selected for the computation, and are
free of systematic errors, provided that the routine adopted for
the erfc function is accurate. The routine selected for the present
computations was taken from ref 7. On the other hand, errors
we encountered when the integration method was used were
many orders of magnitude greater than for the S-method.

Weights. Listed in Table 3 is an illustrative example
analyzing the times of nucleation events in the freezing of 100
SeF6 clusters each composed of 550 molecules.5 Standard
deviations in the derived parametersK and to, as well as the
standard deviations for the residuals in nucleation times, are
tabulated. Standard deviations were calculated from residuals
via the “bona fide error matrix”Mx

W, eq 14. Standard deviations
in Table 3 can be seen to be appreciably lower when the
suggested weights are adopted than when the weights applied
were either unit weights or the arctangent weights that had been
reported to be satisfactory for the analyses of stochastic data
ignoring transient nucleation.3 The very large effect of choice
of weights is due mainly to the overemphasis of data at large
times unless optimum weights are adopted. Large nucleation

times are associated with very large uncertainties, a consequence
of the low probability of nucleation (eq 9) in any particular
interval of time whent is large.

Uncertainties. Sets ofNo nucleation times generated from
No random hits on time bins closely resemble the sets ofNo

times acquired in MD simulations. Some idea about the
distribution of times is conveyed by the 5 sets, each of 200
times, illustrated in Figure 2. The rather large difference between
the sets plotted is not indicative of the characteristic stochastic
scatter but rather, illustrates the extremes found in 10,000 sets.
Shown are the sets that yielded the maximum and minimum
values of K in least squares analyses, and the maximum,
minimum, and a mid range value ofto. Most sets in the ensemble
resemble that for the mid rangeto more closely than they do
any of the illustrated extremes.

Also displayed on a vertical axis in the figure is the
probability distribution (eq 9) in time,t, according to the Wu
moment theory.2 The density of points along the time axis is
based on this distribution. Moreover, since the optimum weights
of points are proportional to the square of this distribution, it
can be seen how little the points at large times influence the
least squares analyses.

TABLE 1: Fraction, Fr, of Nucleation Events Occurring
before Time to Is Reached, as a Function of Assumed
Reduced MomentMR

a

MR to (ps) Kto Fr [eq 18] Fr (MD result)

1.08 64.9 0.957 0.10 0.11
1.2 74.5 1.235 0.18 0.21
1.4 93.2 1.845 0.34 0.34
1.6 118.2 2.801 0.52 0.54
1.9 175.2 5.694 0.83 0.83

a Comparison of theoretical expectation values of eq 18 with those
derived from optimally weighted least squares analyses of a set of 150
MD nucleation runs for (RbCl)108 clusters.4 In each case, weights and
derived results forto andK are consistent with the assumed reduced
moment. Had the time lag been known independently of the assumed
reduced moment, the fraction of events beforeto could have served to
determine the reduced moment for the MD run. Since the MD least
squares fractionFr rises in parallel with that based on eq 18, it can be
seen thatFr provides no basis for estimating the moment.

TABLE 2: Estimation of Transient Nucleation Parameter
MR from Results of Optimally Weighted Least Squares
Analyses of a Set of 150 MD Nucleation Runs for (RbCl)108
Clustersa,b

MR FtK σ(t, ps) σ0.3
2 (t)

1.08 0.837 3.27 7.10
1.2 0.882 2.44 3.33
1.4 0.950 2.13 2.65
1.6 0.979 2.36 5.24
1.9 0.992 2.79 8.64

a Ref 4. b Listed for each assumed moment are the correlation
coefficientsFtK associated with the derived time lag and nucleation
rate, the weighted standard deviationσ(t) between observed and
calculated nucleation times, and the weighted varianceσ0.3

2 (t) in the
transient range covering the first 30% of the nucleation events. The
latter quantity is generally more discriminating than the overall standard
deviation.

TABLE 3: Illustration of Effects of Different Weight
Functions w on Derived Parameters and Their Standard
Deviationsa

w 103 Kb 103 σ K
ls 103 σ K

ε toc σ to

ls σ to

ε FK,to σ(t)c,d

opte 5.01 0.046 0.81 116 1.65 15 0.867 6.1
atanf 5.68 0.212 0.85 136 5.94 21 0.972 15.3
unity 5.94 0.287 1.02 149 9.24 31 0.979 20.3

a A set of 100 nucleation events in (SeF6)550 clusters5 was analyzed
by least squares using the optimum weight, eq 16, the arctangent weight
proposed in ref 3, or unit weight, suggested in ref 1. Comparisons are
based on the reduced moment 1.4 but similar results are found for the
other reduced moments considered in Tables 1 and 2. Standard
deviationsσls are derived from the least squares error matrix. The much
larger standard deviationsσε are estimated via eqs 19 and 20 from the
expectation values of the variance found for the kinetic parameters in
analyses of large sets of stochastically generated nucleation times.b K
in ps-1. c Times in ps.d Standard deviation in time.e Equation 16.f See
ref 1.

Figure 2. Stochastic sets of nucleation times, each for 200 events.
Plots do not illustrate the representative scatter but illustrate sets
corresponding to the maximum (1.63,4), and minimum (0.66,3) K
values (open markers on solid curves), and maximum (1.50,2),
minimum (0.64,1), and midrangeto (b) values (solid markers on
dashed curves), encountered in 10 000 random model sets, all generated
with the same input rate and time lag. Also plotted on a vertical axis
is the probability distribution,P(t) of eq 9. The density of event times
tends to be proportional toP(t), and the optimum weights in least
squares analyses are proportional to the square ofP(t).
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A more direct portrayal of the distribution in results for the
derived kinetic parameters, as well as the dependence on set
size is shown in Figures3-5. Plotted are the (K, to) pairs found
in 1000 sets of runs for set sizes ofNo ) 10, 100, and 1,000
clusters. Most obvious is the decrease in scatter with increasing
set size. Next, is the strong correlation betweenK andto values,

although the correlation breaks down in the ensemble of sets
of only 10 nucleation events where the exceedingly long tail of
the distribution inK from least squares analyses is only hinted
at in the figure. Values ofK as large as 150 times that fed into
the generation of stochastic times have been seen. It is clear
that sets of as few as 10 events cannot be expected to yield
reliable kinetic parameters.

Figures 3-5 qualitatively illustrate the magnitude of the
dispersion of least squares parameters associated with the
stochastic nature of nucleation. A more quantitative portrayal
of uncertainties is given in Figures 6 forK, and Figure 7 forto.
Uncertainties plotted are multiplied by the factor (No - 2)1/2 to
find whether they follow what statisticians refer to as the “root
N law” observed in a wide variety of problems of physical
interest.8 It is apparent that the expectation valuesσε do tend to
follow this law within statistical error except for very small No,
but theσls values do not. Theσls values obtained from the least-

Figure 3. Distribution of least squares values ofK and associatedto
values acquired in analyses of 1000 sets, each ofNo ) 10 stochastic
nucleation events. For each set the event times were based on inputK,
andto values of unity. Two percent of the points lie atK values outside
the figure. Clearly, sets of only 10 events are entirely insufficient to
establish rates and time lags.

Figure 4. Distribution of least squares values ofK and associatedto
values acquired in analyses of 1000 sets, each ofNo ) 100 stochastic
nucleation events. For each set the event times were based on inputK,
and to values of unity.

Figure 5. Distribution of least squares values ofK and associatedto
values acquired in analyses of 1000 sets, each ofNo ) 1000 stochastic
nucleation events. For each set the event times were based on inputK,
and to values of unity.

Figure 6. Dependence on sizes of data sets, of uncertainties in
nucleation rates associated with analyses of sets ofNo stochastic
nucleation events. Solid lines correspond to optimum weighting, and
dashed, to unit weights. The upper curves are for the true mean standard
deviations,σK

ε , and the lower, the mean standard deviations deter-
mined from the least squares error matrices. Each generation of
stochastic nucleation times was based on aK value of unity. All values
plotted areσ values multiplied by the factor (No - 2)1/2 to find whether
the “root N law” applies.

Figure 7. Dependence on sizes of data sets, of uncertainties in time
lags associated with analyses of sets ofNo stochastic nucleation events.
Solid lines correspond to optimum weighting, and dashed, to unit
weights. The upper curves are for the true mean standard deviations,
σto

ε , and the lower, the mean standard deviations determined from the
least squares error matrices. Each generation of stochastic nucleation
times was based on ato value of unity. All values plotted areσ values
multiplied by the factor (No - 2)1/2 to find whether the “rootN law”
applies.
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squares error matrix depend, as expected, upon the weighting
of data, with optimum weights yielding appreciably smaller
standard deviations (over the practical range ofNo) than do the
unit weights used in paper I. More important is the fact that the
expectation valuesσε are considerably larger than theσls. These
expectation values, whose magnitudes are manifested in the
dispersion of points in Figures 3-5, are the more valid measure
of the real uncertainty. Moreover, these magnitudes are not
strongly dependent on whether the optimum or unit weights
are adopted. Although this might suggest the weighting scheme
is of little practical importance, the kinetic parameters derived
do depend appreciably on the weights (Table 3) and the optimum
weights are preferred.

Another result confirmed by application of the stochastic
model is that both theσε and theσls values scale with the kinetic
parameters. That is, ifK (or to) is doubled, so also are the
corresponding values ofσε andσls. Therefore, in the inference
of uncertainties in MD results, where a measure ofσε is not
available, a reasonable estimate of this uncertainty can be
obtained from either of two relations, or

and similarly forto, where the subscript “stoch” refers to a value
derived from a sets of model stochastic nucleation times. Since
the dispersion from the stochastic runs is known both for the
parametersK and to, and also for theσls values for each
parameter, a weighted mean of results from eqs 19 and 20 can
be applied to the estimate of the MD expectation values,σε.
This averaging was done to obtain the entries in Table 3.

Reduced Moments.In paper I it was stated that least squares
refinements in which all three kinetic parameters,K, to, and
MR, were refined together were too ill-conditioned to be
worthwhile. Now that greater numbers on nucleation events can
be acquired, that conclusion may no longer be entirely true,
although such analyses are likely to be unstable even for
currently accessible sizes for MD data sets. In the present paper
such refinements includingMR were not attempted but, rather,
information about the reduced moment was extracted as outlined
in the foregoing. Results illustrating the sensitivity toMR of
the overall standard deviation of nucleation times and of the
sums of squares of residuals in times in the transient region are
illustrated in Table 2 and, more definitively, in Figures 8 and
9.

Discussion

Reduced Moments.Very little information about experi-
mental values of the reduced moment is available in the
literature. Wu gave no guidelines for estimating the moment
but suggested that it be determined from experiments. Kash-
chiev’s theoretical result,9 which corresponds to a reduced
moment of very nearly 1.4, has been cited as being in good
agreement with experimental data,10 but a later publication2

claimed that the Kashchiev result is based on rather crude
approximations and, therefore cannot be assumed to be correct.
From the results in Table 2, it appears that the best fit for a
system of 150 independent (RbCl)108 clusters4 is consistent with
the Kashchiev prediction, but 150 nucleation events are far too
few to be definitive. Preliminary results for 800 nucleation
events in much larger clusters of SeF6 have suggested a similar

value for the moment, while a numerical simulation of the
crystallization of lithium disilicate glass11 can be represented
quite well by a value ofMR in the range of 1.1 to 1.2.

Uncertainties. One of the most important results of the
present work is the finding that the inference of uncertaintyσls

from least squares residuals for a given set of data, as expressed
in the error matrix, far underestimates the true statistical
uncertaintyσε, as illustrated in Figures 3-7. It is often assumed
that errors yielded by the error matrix are “random errors” while
those over and above such random errors are “systematic errors”
either stemming from some deviation of conditions from those
assumed for the data or some error in the theoretical expression
used to define the residuals. In the present treatment, however,
the data points areall based entirely on random selections of
time bins, and hence errors above those from the error matrix
do not conform to the concept of “systematic errors”. The
expectation values of uncertainties,σε, do follow the “rootN
law” expected for random data, while the least squares values
utterly fail to, principally because the variance of the residuals

Figure 8. Histograms of the values ofMR derived from least-squares
fits of stochastically generated nucleation times for thousands of sets
of times when the value ofMR input into the stochastic generation was
1.4, the value indicated by the heavy vertical lines. In the lower two
curves the sets of nucleation times included only 200 nucleation events.
The upper two curves correspond to sets of 800 nucleation events. A
truly precise determination would require sets of thousands of events.
The criteria for selecting theMR value from the least-squares analysis
of any given set were (solid curves) the minimum standard deviation
in time over the entire set, and (dashed curves) the minimum variance
in time in the transient regime, namely the first 20% of the events.

Figure 9. Same quantities as in Figure 8 except that the value ofMR

input into the stochastic generation of nucleation times was 1.9.
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falls off markedly as the number of events,No, in a set increases.
This behavior arises because a smallNo corresponds to a such
a sparse selection of time bins that a potentially very unfaithful
representation of eq 2 is generated. For a very large set where
the sampling of time bins becomes more uniform, the distribu-
tion of times approaches the Wu transient nucleation distribution
built into the construction of the time bins. While this rationale
partly accounts for the diminishing mean-square residuals found
asNo increases, it does not fully explain why the error matrix
is such an unsatisfactory gauge of the true uncertainty. The most
important conclusion concerning the determination of rates and
time lags, then, is that the variance (σε)2 is the appropriate
indicator of uncertainty, not the elements of the least squares
error matrix. Inference of this important information, then,
requires the present stochastic analysis, for it is beyond the
capacity of experiments to determine.

The same conclusion applies to the determination of the
reduced moment. This moment is too strongly correlated with
the other kinetic parameters to make its simultaneous derivation
with K andto advisable when applying current techniques. On
the other hand, if very large sets of nucleation times are
available, this momentcan be determined.

Figures 8 and 9 compare results of determiningMR by the
two criteria mentioned in a previous section. These figures were
generated by carrying out many thousands of sets of stochastic
runs. If MR is inferred from the best fit of an entire “experi-
mental” curve of- ln[Nn(t)/No] vs t, with the theoretical curve
of eq 8, it can be seen that the uncertainty can be very great
because of the very broad foot of the histogram illustrated. The
broadness of this foot is related to the dependence of- ln[Nn-
(t)/No] on MR shown in Figure 1. AsMR increases by fixed

increments, the curves crowd closer and closer together. In
contrast, whenMR is determined from the minimum misfit in
the transient regime, the broad foot of the histogram disappears.
Therefore, as stated previously, the latter method is preferred.
Why it leads to a bimodal distribution of moment when the
number of events is only 200 is not clear. What is clear is that
a precise determination of the moment characterizing the
transient regime requires the acquisition of a very large number
of nucleation events.
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